Группы симметрий в квантовой релятивистской динамике. https://vixra.org/abs/2306.0144

Pastushenko Vladimir Alexandrovich

Главы

- 1. Введение.
- 2. Общие представления.
- 3. Симметрии в классической и в квантовой релятивистской динамике.

1.Введение

Преобразования релятивистской динамики в Специальной Теории Относительности и квантовой релятивистской динамики (модно говорить Квантовой Теории Относительности), представлены в «Единой Теории 2» в одной математической истине. Мы говорим о динамичном пространстве-материи, частным случаем нулевого или фиксированного угла параллельности, есть Евклидовая аксиоматика пространствавремени. Специальная Теория Относительности не может описывать пространство-время в квантовых полях с их принципом неопределенности. Нельзя одновременно зафиксировать и время и координату. И квантовая релятивистская динамика в калибровочных полях, которые следуют из уравнения Дирака, тоже отсутствует. Релятивистская динамика представлена группой Лоренца, а условие инвариантности уравнения Дирака ($A_{\mu}(X) = \bar{A}_{\mu}(X) + i \frac{\partial a(X)}{\partial x_{\mu}}$), представлено условием($\frac{\partial a(X)}{\partial x_{\mu}} \equiv f'(x) = 0$). Но это неизменная экстремаль динамичной функции $a(X) = f(x) \neq const$. В теории Янга-Милса к потенциалу прибавляется производная скалярной функции, не меняющая сам потенциал, в группе симметрии: $A_{\mu} = \Omega(x)A_{\mu}(\Omega)^{-1}(x) + i\Omega(x)\partial_{\mu}(\Omega)^{-1}(x)$, где $\Omega(x) = e^{i\omega}$, и ω - элемент любой группы Ли (SU(N),SO(N),Sp(N),E₆, E₇,E₈,F₄,G₂), и $A_{\mu} \to A_{\mu} + \partial_{\mu}\omega$. При этом U(1)- описывает электромагнитное взаимодействие, SU(2)- Слабые Взаимодействия и SU(3)- описывает Сильные Взаимодействия, и далее. Мы рассмотрим условия: $a(X) = f(x) \neq const$, и обоснования симметрий в квантовой релятивистской динамике (в Квантовой Теории Относительности).

2.Общие представления.

Математическое представление симметрий начнем с простейших геометрических фигур. Правильные фигуры на плоскости сохраняют свою симметрию при поворотах, инверсии. Например:

2.1. прямоугольник симметричен при повороте на 180° , и при повороте на 0° не меняется.

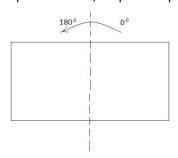


Рисунок 2.1.

Мы имеем две операции. Поворот на 0^0 как $R_0=I$, и поворот на 180^0 как R_{180} . Их можно перемножить, сначала R_0*R_{180} , повернув на 0^0 , потом на 180^0 , или наоборот: $R_{180}*R_0$, в таблице Кэли.

C2	Ι	R ₁₈₀
I	I	R ₁₈₀
R_{180}	R_{180}	I

 $R_0*R_0=R_0=I$, $R_0*R_{180}=R_{180}$, $R_{180}*R_0=R_{180}$, $R_{180}*R_0=R_{180}$, $R_{180}*R_{180}=R_{360}=R_0=I$ Операция $R_0=I$, ничего не меняет, называется единичный элемент данной группы. Группа определяется свойствами. 1). Определена операция группы, здесь поворот. 2). Наличие единичного элемента, $R_0=I$, 3).замкнутость, когда операция в группе дает элемент, не выходящий из группы, 4).наличие обратного элемента $I^{-1}=I$, или $R_{180}^{-1}=R_{180}$. Это элемент, который отменяет предыдущую операцию каждого элемента группы. 5).свойство ассоциативности: A(BC)=(AB)C. Такую группу называют C2.

2.2. пример равностороннего треугольника, с поворотами на 0° , на 120° , и на 240° .

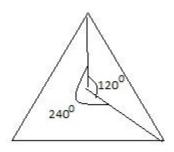


Рисунок 2.2

Точно так составляется таблица умножения данной группы вращений.

C3	Ι	R ₁₂₀	R_{240}
I	Ι	R_{120}	R_{240}
R_{120}	R_{120}	R_{240}	Ι
R_{240}	R_{240}	Ι	R_{120}

Все возможные элементы группы, при перемножении, дают элементы этой же группы. Группа замкнутая. Для каждого элемента есть обратный элемент и тоже в группе. $R_{120}^{-1}=R_{240}$, $R_{240}^{-1}=R_{120}$.

Не только повороты фигур дают группу. Числа (+1) и (-1) так же образуют группу.

	1	-1
1	1	-1
-1	-1 1	

Операцией группы есть умножение. Единичный элемент есть 1. Обратный элемент: $-1^{-1}=-1$. Все условия для группы соблюдены. Эта группа идентична группе С2. Их называют изоморфными. Есть и другие изоморфные группы. Например, при операции отражения σ рассмотренного прямоугольника.

S2	Ι	σ
I	I	σ
σ	σ	I

Если два раза отразить прямоугольник вокруг оси, получим исходный объект, группу со всеми свойствами. Такую группу называют S2, изоморфна группе C2. Умножение координат вектора (2,1) на (-1), приводит к отражению координат относительно начала координат. Поэтому группа чисел (1) и (-1) тоже изоморфна.

2.3. Абелевы и не абелевы группы и подгруппы. Рассмотренные группы вращений СЗ и отражений S3

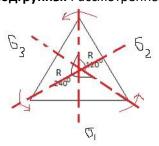


Рисунок 2.3.

Такие вращения и отражения тоже не меняют треугольник, и образуют группу. Запишем для нее таблицу.

D3	Ι	R_{120}	R_{240}	σ_1	σ_2	σ_3
I	Ι	R_{120}	R_{240}	σ_1	σ_2	σ_3
R_{120}	R_{120}	R_{240}	I	σ_2	σ_3	σ_1
R_{240}	R_{240}	I	R_{120}	σ_3	σ_1	σ_2
σ_1	σ_1	σ_3	σ_2	I	R_{240}	R_{120}
σ_2	σ_2	σ_1	σ_3	R_{120}	I	R_{240}
σ_3	σ_3	σ_2	σ_1	R_{240}	R_{120}	I

Группа СЗ есть подгруппы D3. Поворот на R_{120} с отражением σ_1 , равно отражению σ_2 . Но если сначала отразить σ_2 , а потом повернуть R_{120} , получим отражение σ_3 . То есть: $R_{120}*\sigma_1 \neq \sigma_1 * R_{120}$. Но закон коммутативности не есть свойством группы и он не обязан соблюдаться. Группа D3 не абелева, подгруппа C3 абелева. Но если мы выберем указанный треугольник, его симметрия при отражениях уже нарушена.

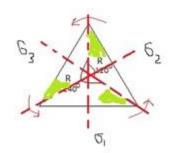


Рисунок 2.4

Такое нарушение симметрии называют спонтанным.

2.4.Представление групп. Как указано, операцией групп может быть любое действие, умножение, поворот, инверсия, что угодно. Элементами групп тоже могут быть любые абстрактные объекты, которые в изоморфных группах можно заменить простыми числами (1) и (-1), если группа коммутативна. Но есть и математические объекты, для которых коммутативность умножения не соблюдается, например матрицы. Иначе говоря, абстрактными элементами групп могут быть и матрицы. В рассмотренной D3 матрице, элементы группы могут представить матрицами, в виде:

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \qquad R_{120} = \frac{1}{2} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}, \quad R_{240} = \frac{1}{2} \begin{pmatrix} -1 & \sqrt{3} \\ -\sqrt{3} & -1 \end{pmatrix},$$

$$\sigma_1 = \frac{1}{2} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \sigma_2 = \frac{1}{2} \begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}, \quad \sigma_3 = \frac{1}{2} \begin{pmatrix} 1 & -\sqrt{3} \\ -\sqrt{3} & -1 \end{pmatrix}.$$

Теперь операцией группы D3 есть матричное умножение. При этом структура группы сохраняется:

$$R_{120}*R_{120}=R_{240}\text{ , или } \qquad \qquad \frac{1}{2}\binom{-1}{\sqrt{3}} - \frac{\sqrt{3}}{2}\binom{1}{\sqrt{3}} - \frac{1}{2}\binom{-1}{\sqrt{3}} - \frac{\sqrt{3}}{2}\binom{1}{\sqrt{3}} + \frac{1}{2}\binom{-1}{\sqrt{3}} - \frac{\sqrt{3}}{2}\binom{1}{\sqrt{3}} + \frac{1}{2}\binom{1}{\sqrt{3}} - \frac{1}{2}\binom{1}{\sqrt$$

Матрицы поворота не коммутируют с матрицами отражения по указанным осям. Но матрицы поворота коммутируют между собой. Произведение $R_{120}*R_{240}=I$, или $\frac{1}{2} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} * \frac{1}{2} \begin{pmatrix} -1 & \sqrt{3} \\ -\sqrt{3} & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I$, дает Единичный элемент группы. Все матрицы обратимы. $R_{120}^{-1}=R_{240}, \quad \frac{1}{2} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}^{-1} = \frac{1}{2} \begin{pmatrix} -1 & \sqrt{3} \\ -\sqrt{3} & -1 \end{pmatrix}$. Обратный элемент матричной группы представляется обратной матрицей: $\sigma_1^{-1}=\sigma_1$, или $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}^{-1}=\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$.

Анализ абстрактных операций группы, таким образом, можно заменить на изучение свойств матриц. Но матрицы можно рассматривать и как операторы действующие на векторы. Например,

при поворотах вектора
$$\binom{0}{1}$$
 на R_{120} , получим: $\frac{1}{2} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} * \binom{0}{1} = \begin{pmatrix} -\sqrt{3}/2 \\ -1/2 \end{pmatrix}$ повернутый вектор, или: $\binom{0}{1}$ на R_{240} , получим $\frac{1}{2} \begin{pmatrix} -1 & \sqrt{3} \\ -\sqrt{3} & -1 \end{pmatrix} * \binom{0}{1} = \begin{pmatrix} \sqrt{3}/2 \\ -1/2 \end{pmatrix}$.

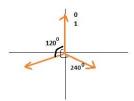


Рисунок 2.5

Умножение остальных матриц на любой из этих трех векторов, будет переводить вектор в один из этих трех. Получим тот же симметричный треугольник. То есть матрицы являются представлением операций.

2.5.В теории групп есть множество теорем: дискретных групп, нормальные подгруппы, классы, фактор — групп... . Рассмотрим группы Ли, в физических теориях. В предыдущей группе, например D3, мы рассматривали симметрии треугольника при поворотах и отражениях. Точно так можно рассматривать симметрии квадрата в группе D4 для 4 поворотов, в правильном пятиугольнике D5 для 5 поворотов, шестиугольнике D6 для 6 поворотов Правильный (N $\rightarrow \infty$) угольник переходит в круг, с поворотом радиуса на угол (α). Окружность инвариантна при поворотах на любой угол (α). Но здесь уже нет рассмотренных ранее элементов групп (R) и (σ).

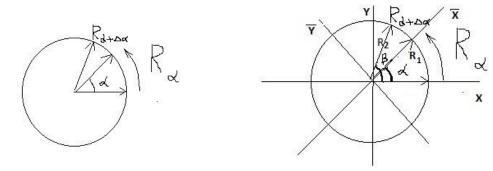


Рисунок 2.6

В такой группе симметрии круга вводится параметр группы, на угол поворота $\,R_{lpha}\,$. В этой группе получаем непрерывный переход от одного элемента группы (R_{α}) к другому $(R_{\alpha+\Delta\alpha})$. Это и есть группы Ли. Здесь есть $(R_0 = I)$ единичный элемент, обратный элемент группы $(R_{lpha}^{-1} = R_{2\pi-lpha})$. Элементы группы тоже представляются матрицами. Если рассматривать повороты системы координат $XY o ar{X}ar{Y}$, получим для

$$R_1(R_{X1}R_{Y1}) \text{ и } R_2(R_{X2}R_{Y2}) \colon \quad R_1*R_2 = |R_1||R_2|\cos(\beta-\alpha) = (R_{X1}R_{X2}+R_{Y1}R_{Y2}) \,, \\ |R_1||R_2|\cos(\beta-\alpha) = |R_1|\cos(\alpha)\,|R_2|\cos(\beta) + |R_1|\sin(\alpha)|R_2|\sin(\beta) \,, \\ \cos(\beta-\alpha) = \cos(\alpha)\cos(\beta) + \sin(\alpha)\sin(\beta) \,, \\ \cos(\beta+\alpha) = \cos(\beta-(-\alpha)) = \cos(-\alpha)\cos(\beta) + \sin(-\alpha)\sin(\beta) \,, \\ \cos(\beta+\alpha) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta) \,, \\ |R_1|*(|R_2|\cos(\beta+\alpha) = \bar{X}) = |R_1|\cos(\alpha)*(|R_2|\cos(\beta) = X) - |R_1|\sin(\alpha)*(|R_2|\sin(\beta) = Y) \,, \\ \bar{X} = X\cos(\alpha) - Y\sin(\alpha) \,. \qquad \text{Аналогично далее:} \\ |R_1||R_2|\sin(\beta+\alpha) = |R_1||R_2|\cos(90-(\beta+\alpha)) = |R_1||R_2|\cos((90-\alpha)-\beta) \,, \\ |R_1||*(|R_2|\sin(\beta+\alpha) = |R_1||R_2|\cos(90-\alpha)\cos(\beta) + |R_1||R_2|\sin(90-\alpha)\sin(\beta) \,, \\ |R_1|*(|R_2|\sin(\beta+\alpha) = \bar{Y}) = |R_1|\sin(\alpha)*(|R_2|\cos(\beta) = X) + |R_1|\cos(\alpha)*(|R_2|\sin(\beta=Y) \,, \\ \bar{Y} = X\sin(\alpha) + Y\cos(\alpha) \,. \end{cases}$$

Окончательно получим преобразования:

$$|ar{X} = X\cos(lpha) - Y\sin(lpha)|$$
 или $(ar{X}) = (X)\cos(lpha) - \sin(lpha)$ $(ar{X}) = X\sin(lpha) + Y\cos(lpha)$ или $(ar{X}) = (X)\cos(lpha) - \sin(lpha)$ $(ar{X}) = (X)\cos(lpha) + Y\cos(lpha)$ $(ar{X}) = (X)\cos(lpha) + Y\cos(lpha)$ и $(ar{X}) = (X)\cos(lpha) + Y\cos(lpha)$ и $(ar{X}) = (X)\cos(lpha) + Y\cos(lpha)$ и $(ar{X}) = (X)\cos(lpha)$ и $(ar{X}) =$

Рассмотренные ранее случаи поворота на
$$120^{0}$$
 и 240^{0} , это частные случаи поворотов R_{α} .
$$R_{120} = \begin{pmatrix} \cos(120) & -\sin(120) \\ \sin(120) & \cos(120) \end{pmatrix} = \frac{1}{2} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}$$

Это (R_{α}) матрица SO(2), то есть Специальная ($\det(R_{\alpha})$ =1) Ортогональная $(R_{\alpha}(R_{\alpha})^{\mathrm{T}}=I)$ матрица, где транспонированная матрица $(R_{\alpha})^{\mathrm{T}} = (R_{\alpha})^{-1}$ равна обратной. Это (R_{α}) матрица поворота, абелева. Матрица операции масштабирования $\begin{pmatrix} M & 0 \\ 0 & M \end{pmatrix}$ с параметром (M=2), выполняет $\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$ увеличение (M>1) или уменьшение (0 < M < 1) исходного вектора. Параметр (М)можно вынести за скобки,

тогда получим $M \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ в скобках генератор группы, не привязан к элементам группы. Угол (α) параметр группы $R_{\alpha} = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix}$ тоже выносится $R_0 = I$, поворот на 0^0 ничего не делает, дает единичную матрицу. Поворот на угол ($\Delta \alpha \to 0$) дает ($R_{\Delta \alpha} = I + \Delta \alpha L$) преобразование, где (L) генератор поворота. Тогда $(R_{\alpha+\Delta\alpha}=R_{\Delta\alpha}R_{\alpha})$, чтобы повернуть на угол $(\alpha+\Delta\alpha)$, надо сначала повернуть на угол (α) , потом на угол $(\Delta\alpha)$. Подставляя значения, получим: $(R_{\alpha+\Delta\alpha}=(I+\Delta\alpha L)R_{\alpha}=R_{\alpha}+\Delta\alpha LR_{\alpha})$. Дальше, обычным порядком получаем: $(R_{\alpha+\Delta\alpha}-R_{\alpha}=\Delta\alpha LR_{\alpha})$, $\lim \frac{R_{\alpha+\Delta\alpha}-R_{\alpha}}{\Delta\alpha\to 0}=LR_{\alpha}$, $\frac{dR_{\alpha}}{d\alpha}=LR_{\alpha}$, $\frac{dR_{\alpha}}{R_{\alpha}}=Ld\alpha$, $R_{lpha}=e^{lpha L}$, решение дифференциального уравнения, с генератором группы $(rac{dR_{lpha}}{dlpha})_0=L$. Эти уравнения похожи на уравнение Шредингера: $\frac{dU}{dt}=-iHU$,с решениями: $U=e^{-itH}$. Здесь генератор группы представлен оператором Гамильтона, а вместо поворота на угол, рассматривается время. В нашем случае поворотов, генератор группы равен производной элементов группы при нулевом угле поворота. Возьмем производные,

подставим значение угла и получим генератор группы. $\frac{dR_\alpha}{d\alpha} = \begin{pmatrix} -\sin(0) & -\cos(0) \\ \cos(0) & -\sin(0) \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = L. \;\; \text{Или} \\ \frac{dR_\alpha}{d\alpha} = LR_\alpha \;\; \text{,B виде:} \quad \frac{dR_\alpha}{d\alpha} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix}.$ Здесь $\cos^2{(\alpha)} + \sin^2{(\alpha)} = 1$, как и полагается. Тогда повернутый и исходный вектор представлен в виде: $ar{V} = e^{lphainom{0}{1} - 1}V$. где $e^{lphainom{0}{1} - 1}$ - матрица элемента группы. Теперь мы поворачиваем вектор на угол (lpha) не

пользуясь тригонометрическими функциями. Сами генераторы многое говорят о самой группе. Например, генератор масштабирования $e^{minom{1}{0} \quad 0} = e^{inom{m}{0} \quad m}$ представлен как элемент группы. Масштабный множитель это: $M=e^m$ экспонента параметра группы (m).

2.6.Элементы групп Ли находят матричным экспоненцированием генераторов групп Ли. Сами элементы рассматриваются как генераторы действующие на вектор. Эти операторы меняют вектор. Но в группе всегда остается неизменным инвариант. Генератор групп Ли: $L = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ меняет элемент группы Ли $R_{\alpha} = e^{\pm \alpha \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}}$, как оператор масштабирования. Подействовав R_{α} на столбец координаты точки, получаем радиально расходящиеся (сходящиеся) точки с неизменным углом (α) . Генератор группы $L = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ дает элемент группы $R_{\alpha} = e^{\pm \alpha \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}}$, как точки движущейся по окружности. Неизменным есть длина вектора.). Генератор группы $L = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ дает элемент группы $R_{\alpha} = e^{\pm \alpha \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}}$, как точки движущейся по гиперболе. Экспоненцирование такого генератора, дает $\Lambda = \begin{pmatrix} \mathrm{ch}(\alpha) & \mathrm{sh}(\alpha) \\ \mathrm{sh}(\alpha) & \mathrm{ch}(\alpha) \end{pmatrix}$, группу Лоренца. При этом имеет место: $\mathrm{ch}^2(\alpha) - \mathrm{sh}^2(\alpha) = 1$, как и полагается. Напомним графики этих функций $Y = Y_0 \mathrm{ch}\left(\alpha = \frac{X=Z}{Y_0}\right)$ в виде:

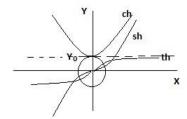


Рисунок 2.7

Здесь группа Лоренца $\Lambda = \begin{pmatrix} \operatorname{ch}(\alpha) & \operatorname{sh}(\alpha) \\ \operatorname{sh}(\alpha) & \operatorname{ch}(\alpha) \end{pmatrix}$, вместе с $\operatorname{ch}^2(\alpha) - \operatorname{sh}^2(\alpha) = 1$ и элементами группы в виде $R_\alpha = e^{\pm \alpha \binom{0}{1} - \binom{1}{0}}$ представлены в гиперболических функциях $e^z = \operatorname{ch}(z) + \operatorname{sh}(z)$. В то же время мы выводили преобразования релятивистской динамики $R_\alpha = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix}$ матрица группы Ли, с генератором уже в тригонометрических $e^{iz} = \cos(z) + i\sin(z)$ функциях $R_\alpha = e^{i\alpha\binom{0}{1} - \binom{0}{1}}$ элементов группы. Есть проблема в решениях релятивистки инвариантного уравнения Дирака. Действие кванта $\hbar = \Delta p \Delta \lambda = F \Delta t \Delta \lambda$, зафиксировать в пространстве $\Delta \lambda$ или во времени Δt нельзя. Это связано с ненулевым $\phi \neq \cos(t)$ углом параллельности $\phi = 0$ или $\phi = 0$ траектории $\phi = 0$ кванта пространства-материи. Есть только некая вероятность действия. Преобразования релятивистской динамики волновой $\phi = 0$ функции квантового поля с плотностью вероятности $\phi = 0$ взаимодействия в $\phi = 0$ поле (рис.3), соответствуют Глобально Инвариантной $\phi = 0$ релятивистки - инвариантному уравнению Дирака.

$$i\gamma_{\mu}\frac{\partial\psi(X)}{\partial x_{\mu}}-m\psi(X)=0$$

$$i\gamma_{\mu}\frac{\partial\overline{\psi}(X)}{\partial x_{\mu}}-m\overline{\psi}(X)=0$$

Такая инвариантность дает законы сохранения в уравнениях движения. Для преобразований релятивистской динамики в гиперболическом движении,

$$\psi(X) = e^{a(X)}\overline{\psi}(X), \qquad ch(aX) = \frac{1}{2}(e^{aX} + e^{-aX}) \cong e^{aX}, \qquad a(X) \neq const,$$
$$\left[i\gamma_{\mu}\frac{\partial\overline{\psi}(X)}{\partial x_{\mu}} - m\overline{\psi}(X)\right] + i\gamma_{\mu}\frac{\partial a(X)}{\partial x_{\mu}}\overline{\psi}(X) = 0$$

Инвариантность законов сохранения нарушена. Для их сохранения вводятся калибровочные поля. Они компенсируют дополнительное слагаемое в уравнении.

$$A_{\mu}\big(X\big) = \overline{A}_{\mu}\big(X\big) + i\frac{\partial a\big(X\big)}{\partial x_{\mu}} \qquad \qquad i\gamma_{\mu}\Bigg[\frac{\partial}{\partial x_{\mu}} + iA_{\mu}\big(X\big)\Bigg]\psi\big(X\big) - m\psi\big(X\big) = 0$$

Теперь уже в такое уравнение, подставляя значение $\psi(X) = e^{a(X)}\overline{\psi}(X)$, $a(X) \neq const$ волновой функции, получим инвариантное уравнение релятивистской динамики.

$$i\gamma_{\mu}\frac{\partial\psi}{\partial x_{\mu}}-\gamma_{\mu}A_{\mu}(X)\psi-m\psi=i\gamma_{\mu}\frac{\partial\overline{\psi}}{\partial x_{\mu}}+i\gamma_{\mu}\frac{\partial a(X)}{\partial x_{\mu}}\overline{\psi}-\gamma_{\mu}\overline{A}_{\mu}(X)\overline{\psi}-i\gamma_{\mu}\frac{\partial a(X)}{\partial x_{\mu}}\overline{\psi}-m\overline{\psi}=0$$

$$i\gamma_{\mu}\frac{\partial\overline{\psi}}{\partial x_{\mu}}-\gamma_{\mu}\overline{A}_{\mu}\big(X\big)\overline{\psi}-m\,\overline{\psi}=0 \qquad \qquad i\gamma_{\mu}\Bigg[\frac{\partial}{\partial x_{\mu}}+i\overline{A}_{\mu}\big(X\big)\Bigg]\overline{\psi}-m\,\overline{\psi}=0$$

Это уравнение инвариантно исходному уравнению

$$i\gamma_{\mu}\Bigg[\frac{\partial}{\partial x_{\mu}}+iA_{\mu}\big(X\big)\Bigg]\psi\big(X\big)-m\psi\big(X\big)=0$$
 в условиях
$$A_{\mu}\Big(X\big)=\overline{A}_{\mu}\Big(X\Big),\quad\text{и}\quad A_{\mu}(X)=\bar{A}_{\mu}(X)+i\frac{\partial a(X)}{\partial x_{\mu}},$$

наличия скалярного бозона $(\sqrt{(+a)(-a)}=ia(\Delta X)\neq 0)=const$, в пределах калибровочного $(\Delta X)\neq 0)$ поля (рис. 3). Эти условия $(\frac{\partial a(X)}{\partial x_\mu}\equiv f'(x)=0)$ дают неизменные экстремали (f_{max}) динамичного $a(X)=f(x)\neq const$ пространства-материи в глобальной инвариантности. И здесь нет скалярных бозонов. Это: $A_\mu(X)=\bar{A}_\mu(X)+i\frac{\partial a(X)}{\partial x_\mu}$, известные калибровочные преобразования. a(X)-4-вектор (A_0,A_1,A_2,A_3) электромагнитного скалярного $(\varphi=A_0)$ и векторного $(\vec{A}=A_1,A_2,A_3)$ потенциала в электродинамике Максвелла: $\vec{E}=-\nabla\varphi-\frac{\partial\vec{A}}{\partial t}$, и $\vec{B}=-\nabla x\vec{A}$, градиента и ротора, или $F_{\mu\nu}=\partial_\mu A_\nu-\partial_\nu A_\mu$, с тензором $(F_{\mu\nu})$, $(E_X,E_Y,E_Z,E_X,E_Y,E_Z)$ компонент и преобразованиями Лоренца. К такому потенциалу прибавляется производная скалярной функции, не меняющая сам потенциал. Это ключевой момент. В теории Янга-Милса он представлен группой симметрии, $A_\mu=\Omega(x)A_\mu(\Omega)^{-1}(x)+i\Omega(x)\partial_\mu(\Omega)^{-1}(x)$, где $\Omega(x)=e^{i\omega}$, и ω - элемент любой (SU(N),SO(N), Sp(N),E₆, E₇,E₈,F₄,G₂) группы Ли, $A_\mu\to A_\mu+\partial_\mu\omega$. В реальности, это фиксированное состояние динамичной функции: $K_Y=\psi+Y_0$, в квантовой релятивистской динамике. Условно говоря, в каждой фиксированной точке: $a(\frac{x=Z}{Y_0})=const$, есть свой (угол наклона веток) гиперболический косинус, $K_Y=Y_0ch(\frac{x=Z}{Y_0})\equiv e^{a(\frac{x=Z}{Y_0})}$, уже в ортогональной $(YZ\perp X)$) плоскости, причем, за пределами динамичного в квантовой релятивистской динамике (Y_0) . Таким образом, скалярные бозоны в калибровочных полях, созданы искусственно, для устранения недостатков Теории Относительности в

3.симметрии в классической и квантовой релятивистской динамике

3.1. преобразования Лоренца в физике рассматриваются в виде: $\bar{x} = \frac{x+wt}{\sqrt{1-w^2}}$, $\bar{t} = \frac{t+wx}{\sqrt{1-w^2}}$, c=1. Эти две формулы представляются в виде одного матричного выражения.

$$\frac{1}{\sqrt{1-w^2}} \begin{pmatrix} 1 & w \\ w & 1 \end{pmatrix} \begin{pmatrix} t \\ \chi \end{pmatrix} = \frac{1}{\sqrt{1-w^2}} \begin{pmatrix} t+wx \\ wt+\chi \end{pmatrix} = \begin{pmatrix} \bar{t} \\ \bar{\chi} \end{pmatrix}. \qquad \Lambda = \begin{pmatrix} \operatorname{ch}(\alpha) & \operatorname{sh}(\alpha) \\ \operatorname{sh}(\alpha) & \operatorname{ch}(\alpha) \end{pmatrix}$$

Действие матрицы переводит не штрихованные координаты вектора в штрихованные. Угол поворота в гиперболических преобразованиях связан с гиперболическим арктангенсом. $\alpha = arc \ th(w)$ и находят этот угол из скорости, которая приближается к единице: $w \to (c=1)$. Математический аппарат теории групп, таким образом достаточно универсален в Евклидовой аксиоматике пространства-времени. Они известны:

- 1. «Точка есть то, часть чего ничто») («Начала» Евклида). или Точка есть то, что не имеет частей,
- 2. Линия длина без ширины.

квантовых полях.

3. И 5-й постулат о параллельных прямых линиях, которые не пересекаются. Если прямая, пересекающая две прямые, образует внутренние односторонние углы, меньшие двух прямых, то, продолженные неограниченно, эти две прямые встретятся с той стороны, где углы меньше двух прямых.

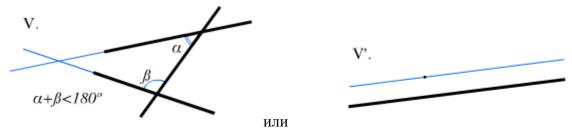


рисунок. 3.1 Евклидовая аксиоматика

То есть, через точку вне прямой, можно провести только одну прямую, параллельную линию.

3.2. на самом деле в «Единой теории 2», отмечены неразрешимые в Евклидовой аксиоматике противоречия. То есть, множество линий в одной линии (длине без ширины), снова линия. Это линия или множество линий? Аналогично, множество точек в одной точке — снова точка. Это точка или их множество? Ответов на такие вопросы Евклидовые «Начала» не дают. Общеизвестны и проблемы 5-го постулата, решение которого открыли геометрию Лобачевского и Риманово пространство.

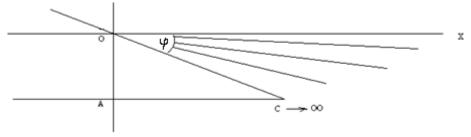


Рисунок.3.2 динамичное пространство пучка параллельных прямых

Есть реальные факты динамичного пространства пучка прямых линий, не пересекающих, то есть параллельных исходной прямой АС на бесконечности, представленные в «Единой теории 2». И двигаясь вдоль линии (АС), рядом будет динамичное пространство, в которое мы попасть не сможем в принципе.

Бесконечность нельзя остановить, поэтому такое уже динамичное пространство существует всегда. И уже свойства этого динамичного ($\varphi \neq const$) пространства, представляются как свойства материи, главным свойством которой, есть движение. Нет материи вне такого пространства, и нет пространства без материи. Пространства-материи это одно и то же.

В таком динамичном пространстве-материи, Евклидовая аксиоматика представлена как частный случай нулевого ($\phi=0$) угла параллельности. При этом решается проблема множества именно прямых линий в одной прямой параллельной линии, как «длине без ширины».

Главным свойством динамичного пространства-материи, есть динамичный ($\phi \neq const$) угол параллельности. При этом Евклидовое пространство в осях XYZ теряет смысл.

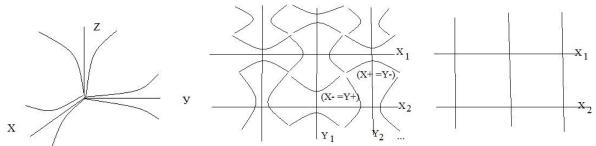


рисунок. 3.3 динамичное пространство-материя

В «Единой Теории2» (), Преобразования релятивистской динамики в Специальной Теории Относительности и квантовой релятивистской динамики (модно говорить Квантовой Теории Относительности), представлены в одной математической истине, виде. Речь идет о релятивистской динамике радиус-вектора динамичной сферы с нестационарным Евклидовым пространством-временем, на траектории (X-) или (Y-) кванта (X±) (Y±) соответственно, динамичного пространства-материи. Рассмотрим для примера квант (X±) динамичного пространства-материи.

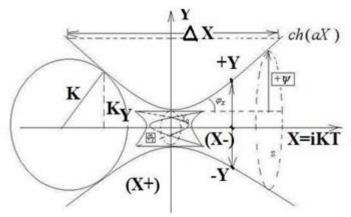


Рисунок 3.4 квант динамичного пространства-материи

Мы видим, что динамичный радиус-вектор (К) в сфере с нестационарным Евклидовым пространством временем, имеет проекции (K_Y) в плоскости круга динамичной сферы, и проекции (K_X) на (X-) траектории. На (n)сходимости, как мы уже знаем, и видим, два замкнутых на (Y-) траектории (Y±) кванта. Как уже отмечали, в каждой фиксируемой в эксперименте точке с ($i\psi = \sqrt{(+\psi)(-\psi)}$) волновой функцией, имеется гиперболический косинус с различными углами наклона веток графика. В сечении круга, фиксируемой в эксперименте точке с ($i\psi = \sqrt{(+\psi)(-\psi)}$) волновой функцией имеем тригонометрические функции, с различными радиусами круга в различных фиксируемых точек (Х-) траектории кванта пространства-материи. Как видим в фиксированных точках, фиксируемых экспериментальных фактов, оба представления группы Лоренца действительны и соответствуют истине. Условия $A_{\mu}(X)=ar{A}_{\mu}(X)+irac{\partial a(X)}{\partial x_{\mu}}$ уравнения Дирака и условия $A_\mu=\Omega(x)A_\mu(\Omega)^{-1}(x)+i\Omega(x)\partial_\mu(\Omega)^{-1}(x)$, где: $\Omega(x)=e^{i\omega}$, в теории Янга-Милса не нарушаются. Здесь $e^{i\omega}=\cos\omega+i\sin\omega$, и ($i\sin\omega\equiv K_Y=\sqrt{(+\sin\,\omega)(-\sin\,\omega)}=i\psi=\sqrt{(+\psi)(-\psi)}$. Единичные матрицы элементов (R_{α}) групп, $\cos^2(\alpha) + \sin^2(\alpha) = 1$ для любых поворотов и (Λ) групп: $\cosh^2(\alpha) - \sinh^2(\alpha) = 1$, и их производные в виде генераторов групп (сводимых к нулевым начальным условиям), неизменны. Но саму динамику таких условий, то есть квантовую релятивистскую динамику радиус-вектора динамичной сферы с нестационарным Евклидовым пространством-временем, мы потеряли. Ее нет. Такая динамика $a(X) \neq const$, представлена матрицей, с динамичной волновой функцией: $i\psi = isin\ \omega \equiv \pm K_Y$ в эксперименте, как аргументе, как фиксируемом факте реальности. Но теории, или моделей, уравнений таких «скрытых процессов», как видим, нет. Надо сказать, что в динамичном пространства-материи, есть пространствоматерия, в которое мы не можем попасть в принципе. Не можем проникнуть, по определению.

Представим табличный (сравнительный) анализ представлений групп Лоренца релятивистской динамики Специальной Теории Относительности и квантовой релятивистской динамики, в полном виде, без условия (c=1) скорости света.

$$R_{\alpha} = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix}, \ \cos^2(\alpha) + \sin^2(\alpha) = 1$$

$$R_{\alpha=0} = I, \quad (R_{\Delta\alpha} = I + \Delta \ \alpha L) \\ (R_{\alpha+\Delta\alpha} = (I + \Delta \ \alpha L) R_{\alpha} = R_{\alpha} + \Delta \ \alpha L R_{\alpha}). \\ (R_{\alpha+\Delta\alpha} - R_{\alpha} = \Delta \ \alpha L R_{\alpha}), \lim \frac{R_{\alpha+\Delta\alpha} - R_{\alpha}}{\Delta \alpha \to 0} = L R_{\alpha}, \\ \frac{dR_{\alpha}}{d\alpha} = L R_{\alpha}, \quad R_{\alpha} = e^{\alpha L}, \text{ решение дифференциального уравнения, с генератором группы } (\frac{dR_{\alpha}}{d\alpha})_{0} = L.$$

$$(\frac{dR_{\alpha}}{d\alpha})_{\alpha=0} = \begin{pmatrix} -\sin(0) & -\cos(0) \\ \cos(0) & -\sin(0) \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = L$$

$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = L, \text{ генератор группы}$$

$$R_{\alpha} = e^{\alpha L} = e^{\alpha * \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}}, \ \alpha \text{ - параметр группы}$$

$$\Lambda = \begin{pmatrix} \operatorname{ch}\left(\frac{x \equiv Z}{\gamma_0}\right) & \operatorname{sh}\left(\frac{x \equiv Z}{\gamma_0}\right) \\ \operatorname{sh}\left(\frac{x \equiv Z}{\gamma_0}\right) & \operatorname{ch}\left(\frac{x \equiv Z}{\gamma_0}\right) \end{pmatrix}, \quad \operatorname{ch}^2\left(\frac{x \equiv Z}{\gamma_0}\right) - \operatorname{sh}^2\left(\frac{x \equiv Z}{\gamma_0}\right) = 1$$

$$\Lambda_0\left(\frac{X = 0}{\gamma_0}\right) = I \;, \quad (\Lambda_{\Delta X} = I + \Delta \left(\frac{X}{\gamma_0}\right) * L\right)$$

$$\Lambda_{\frac{X + \Delta X}{\gamma_0}} = (I + \Delta * L) \; \Lambda_{\frac{X + \Delta X}{\gamma_0}}, \quad (x/y_0)$$

$$\Lambda_{\frac{X + \Delta X}{\gamma_0}} - \Lambda_{(x/y_0)} = \Delta \left(x/y_0\right) * L \; \Lambda_{(x/y_0)} \;,$$

$$\frac{d \; \Lambda_{(x/y_0)}}{d(x/y_0)} = L \; \Lambda_{(x/y_0)} \;, \quad x \neq const \;, \; y_0 \neq const \;, \; \text{динамичной}$$

$$\operatorname{сферы}, \; \Lambda_{(x/y_0)} = e^{(x/y_0)L}, \; \left(\frac{d \; \Lambda_{(x/y_0)}}{d(x/y_0)}\right)_{(x/y_0) = 0} = L.$$

$$\left(\frac{d \; \Lambda_{(x/y_0)}}{d(x/y_0)}\right)_{(x/y_0) = 0} = \begin{pmatrix} \operatorname{sh}(0) & \operatorname{ch}(0) \\ \operatorname{ch}(0) & \operatorname{sh}(0) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = L$$

$$\left(\frac{0 \quad 1}{1} \quad 0 \right) = L \;, \; \text{генератор группы}$$

$$\Lambda_{(x/y_0)} = e^{(x/y_0)*\binom{0 \quad 1}{1}} \quad 0 \;, \; (x/y_0) \; - \; \text{параметр группы}$$

 $R_{lpha}*\Lambda_{(x/y_0)}=e^{lpha*inom{0}{1}}*e^{(x/y_0)*inom{0}{1}}*e^{(x/y_0)*inom{0}{1}},$ одновременная динамика кругового и гиперболического движения Радиус-вектора (его вершины) динамичной $(y_0 \neq const)$ сферы.

Специальная Теория Относительности	Группа Лоренца
$\bar{x} = \frac{x - wt}{\sqrt{1 - (w/c)^2}}, \qquad \bar{t} = \frac{t - wx/c^2}{\sqrt{1 - (w/c)^2}}$	$\Lambda = \frac{1}{\sqrt{1 - (w/c)^2}} \begin{pmatrix} 1 & w/c^2 \\ w & 1 \end{pmatrix}, \qquad \Lambda * \begin{pmatrix} t \\ \chi \end{pmatrix} = \begin{pmatrix} \bar{t} \\ \bar{\chi} \end{pmatrix}$
$\overline{W} = \frac{x - wt}{t - wx/c^2} ,$	$\frac{1}{\sqrt{1-(w/c)^2}} {1 \choose w} \frac{w/c^2}{1} {t \choose x} = \frac{1}{\sqrt{1-(w/c)^2}} {t-wx/c^2 \choose -wt+x} = {\bar{t} \choose \bar{x}},$
	$ar{t}=rac{t-wx/c^2}{\sqrt{1-(w/c)^2}},\;\;ar{x}=rac{-wt+x}{\sqrt{1-(w/c)^2}}$, точно такая динамика
квантовая релятивистская динамика	(Квантовой Теории Относительности)
$ \overline{K_Y} = \frac{a_{11}K_Y - cT}{\sqrt{1 - (a_{22})^2}}, \qquad \overline{T} = \frac{a_{22}T - K_Y/c}{\sqrt{1 - (a_{22})^2}}, a_{11} = \cos(\varphi_Y) \neq const, a_{22} = \cos(\varphi_X) \neq const, \overline{w} = \frac{a_{11}K_Y - cT}{a_{22}T - K_Y/c} = \frac{a_{11}W_Y - c}{a_{22} - W_Y/c}, $	$Q = \frac{1}{\sqrt{1 - (a_{22})^2}} \begin{pmatrix} a_{22} & 1/c \\ c & a_{11} \end{pmatrix}, \qquad Q * \begin{pmatrix} T \\ K_Y \end{pmatrix} = \begin{pmatrix} T \\ \overline{K} \end{pmatrix}$ $\frac{1}{\sqrt{1 - (a_{22})^2}} \begin{pmatrix} a_{22} & 1/c \\ c & a_{11} \end{pmatrix} \begin{pmatrix} T \\ K_Y \end{pmatrix} = \frac{1}{\sqrt{1 - (a_{22})^2}} \begin{pmatrix} a_{22}T - K_Y/c \\ a_{11}K_Y - cT \end{pmatrix} = \begin{pmatrix} T \\ \overline{K} \end{pmatrix}$
	$ \begin{pmatrix} (a_{11} \neq a_{22}) \neq const, \\ \binom{a_{22}}{c} & \frac{1/c}{a_{11}} = a_{11} * a_{22} - c * \frac{1}{c} = 0, a_{11} * a_{22} = c * \frac{1}{c} = 1, $
	откуда следует: $a_{11}*a_{22} = \cos(\varphi_Y)*\cos(\varphi_X) = 1$,

В случае квантовой релятивистской динамики, как видим, следует условие симметрии: в условиях $(a_{11} \neq a_{22}) \neq const$, получим: $a_{11} * a_{22} = \cos(\varphi_Y) * \cos(\varphi_X) = 1$, в ненулевых значениях углов параллельности $(\varphi_Y \neq 0)$, $(\varphi_X \neq 0)$, для условий знаменателя $\sqrt{1-(a_{22})^2} \neq 0$, $(X\pm)$ кванта. Точно такие преобразования, для $(Y\pm)$ кванта, с условиями знаменателя $\sqrt{1-(a_{11})^2} \neq 0$. Но углы параллельности не могут быть 90^0 . Это значит $(arphi
eq 90^{\circ})$, что есть предельные углы параллельности, которым соответствуют константы взаимодействий, в виде: $\cos(\varphi_Y)_{max}=\alpha(Y\pm)=1/137.036$, и: $\cos^2(\varphi_X)_{max}=G(X\pm)=6.67*10^{-8}$. Как видим, сами квантовые колебания (ответ на вопрос ПОЧЕМУ) обусловлены предельными углами параллельности, в квантовой релятивистской динамике. В численных оценках, период $(T=(K_Y/c)\approx (3*10^{-14}sm)/3*10^{10}\approx 10^{-24})s$ колебаний, и частота $(\nu = \frac{1}{r})^2 = \rho$, в единых Критериях Эволюции, связаны с предельными плотностями (как причина) квантовых полей пространства-материи.

В «Единой Теории2», мы рассматривали единые Критерии Эволюции динамичного пространстваматерии в многомерном пространстве-времени. В частности заряд: q= ПК(Y+ =X -) в электро (Y+ =X -) магнитных полях, и массу m=ПК(X+=Y-) в гравит (X+=Y-) массовых полях. Мы также рассматривали модели квантовых полей протона: $(X\pm = p^+) = (Y-=\gamma_0^+)(X+=\nu_e^-)(Y-=\gamma_0^+)$ и: $(Y\pm = e^-) = (X-=\nu_e^-)(Y+=\gamma^+)(X-=\nu_e^-)$ электрона. Тогда условия: $a_{22}^2*a_{11}=\cos^2(\varphi_X)\cos(\varphi_Y)=1$, квантовой релятивистской динамики $(X\pm)$ кванта принимают вид: $(X \pm) = (X + = Y -)^2 * (Y + = X -)$, или: $\Pi K * \cos^2(\varphi_X) \cos(\varphi_Y) = 1 * \Pi K$.

$$(\Pi K(X+=Y-)=m_0=1)*cos^2(\varphi_X)_{max}cos(\varphi_Y)_{max}=1*(\Pi K(Y+=X-)=q_0=1),$$

 $(\Pi K(X+=Y-)=m_0=1)*cos^2(\varphi_X)_{max}cos(\varphi_Y)_{max}=1*(\Pi K(Y+=X-)=q_0=1),$ Масштабируем (a_{22}) , в состоянии кванта: $a_{22}^2*a_{11}=\cos^2(\varphi_X)\cos(\varphi_Y)=1$ матрицей $\begin{pmatrix} 1 & \alpha \\ 1 & 1 \end{pmatrix}^2=(1-\alpha)^2$. Тогда:

$$(m_0=1)*(1-\alpha)^2(cos^2(\varphi_X)_{max}=G)(cos(\varphi_Y)_{max}=\alpha)=1*q\;,\qquad \text{или}\\ q(\,\mathrm{Y}+=\mathrm{X}\,-)=(1-\alpha)^2*G*\alpha=(1-1/137.036)^2*6.67*10^8*(1/137.036)=4.8*10^{-10}.$$

Мы получили электрический заряд в группе симметрии его квантовой релятивистской динамики, в известных соотношениях: $\alpha=q^2/\hbar c$, $w=\alpha c$, $\alpha=\cos(\varphi_Y)_{max}=a_{11}$, $\cos(\varphi_Y)=\cos(\varphi_X)$, уже как симметрии $(X\pm=Y\mp)$ полей единого (X+=Y-), (X-=Y+) динамичного пространства-материи.

Таким же образом, масштабируя группу симметрии $Q = e^{(X,Y)*L}$, квантовой релятивистской динамики (модно говорить в Квантовой Теории Относительности), но уже массовых полей, можно искать спектр масс элементарных частиц. Это отличается от симметрий групп Лоренца в калибровочных полях.

Супер симметрии в квантовой релятивистской динамике.

Главы

- 4. Введение.
- 5. Представление групп симметрий в квантовой релятивистской динамике.
- 6. Супер симметрии в квантовой релятивистской динамике.

1.Введение

Супер симметрии в квантовой релятивистской динамике, рассматриваются в тех же математических моделях, что и симметрии. Симметрии в квантовой релятивистской динамики (модно говорить Квантовой Теории Относительности), рассматривались в одной математической истине с симметриями группы Лоренца в калибровочных полях. Есть разница представлений групп симметрии в релятивистской динамике Специальной Теории Относительности, как группы Лоренца и группы симметрии в квантовой релятивистской динамике (Квантовой Теории Относительности). В первом случае симметрия группы Лоренца рассматривалась в пространстве-времени с Евклидовой аксиоматикой. Это общеизвестные аксиомы Евклида.

- 1. «Точка есть то, часть чего ничто») («Начала» Евклида). или Точка есть то, что не имеет частей,
- 2. Линия длина без ширины.

3. И 5-й постулат о параллельных прямых линиях, которые не пересекаются. Если прямая, пересекающая две прямые, образует внутренние односторонние углы, меньшие двух прямых, то, продолженные неограниченно, эти две прямые встретятся с той стороны, где углы меньше двух прямых.

Рисунок 1

При этом, угол параллельности ($\phi = 0$) равен нулю, и множество прямых линий в одной «...длина без ширины» тоже прямая линия. Это проблема Евклидовой аксиоматики. Ее нет в динамичном пространстве-материи:

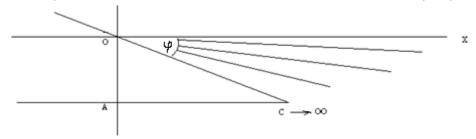


Рисунок 2

с ненулевым $(\phi \neq 0) \neq const$, и динамичным углом параллельности. Бесконечность $(AC \to \infty)$ нельзя остановить, поэтому динамичное пространство-материя существует всегда. В сетке Евклидовых прямых линий

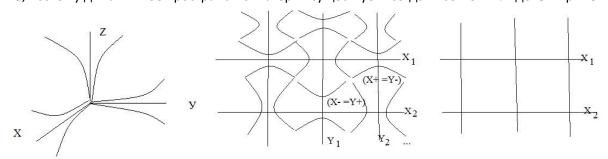


Рисунок 3

мы не видим динамичного пространства-материи, а само Евклидовое пространство, теряет смысл. Вернее, мы говорим о нестационарном Евклидовом пространстве в пределах динамичного угла параллельности. Такое динамичное пространство-материя, имеет собственные аксиомы как факты, не требующие доказательств. В случае фиксации угла параллельности, что особенно актуально в фиксированных экспериментальных данных, мы получаем Евклидовую аксиоматику пространства-времени, или варианты Риманового пространства (в том числе геометрию Лобачевского), в современных теориях, с принципом неопределенности, волновой функцией и технологией квантовых теорий. И именно в таком, динамичном пространстве-материи, мы уже рассматривали симметрии квантовой релятивистской динамики.

2. Представление групп симметрий в квантовой релятивистской динамике.

В симметрии квантовой релятивистской динамике, мы получили преобразования квантовой релятивистской динамики (Квантовой Теории Относительности), по аналогии с классической релятивистской динамикой Специальной Теории Относительности Эйнштейна представленной группой Лоренца. Представим их табличный (сравнительный) анализ в виде:

Таблица 1

Специальная Теория Относительности
$$(c=1)$$

$$\bar{x} = \frac{x-wt}{\sqrt{1-(w)^2}},$$

$$\bar{t} = \frac{t-wx}{\sqrt{1-(w)^2}}$$

$$\bar{w} = \frac{x-wt}{t-wx},$$

$$\bar{v} = \frac{x-wt}{\sqrt{1-(w)^2}}$$

$$\bar{v} = \frac{x-wt}{t-wx},$$

$$\bar{v} = \frac{x-wt}{\sqrt{1-(w)^2}}$$

$$\bar{v} = \frac{x-wt}{t-wx},$$

$$\bar{v} = \frac{x-wt}{\sqrt{1-(w)^2}}$$

$$\bar{v} = \frac{x-wt}{t-wx},$$

$$\bar{v} = \frac{1}{\sqrt{1-(w)^2}} \left(\frac{t-wx}{x}\right) = \left(\frac{\bar{t}}{\bar{x}}\right),$$

$$ar{t} = rac{t - wx}{\sqrt{1 - (w)^2}}$$
, $ar{x} = rac{-wt + x}{\sqrt{1 - (w)^2}}$, точно такая динамика

квантовая релятивистская динамика
$$(c \neq 1)$$
 (Квантовой Теории Относительности)
$$\overline{K_Y} = \frac{a_{11}K_Y - cT_X}{\sqrt{1 - (a_{22})^2}} \,, \qquad \overline{T_X} = \frac{a_{22}T_X - K_Y/c}{\sqrt{1 - (a_{22})^2}} \,, \qquad Q * \begin{pmatrix} T \\ \sqrt{1 - (a_{22})^2} \end{pmatrix} \,, \qquad Q * \begin{pmatrix} T \\ \sqrt{T} \end{pmatrix} = \begin{pmatrix} \overline{T} \\ \overline{K} \end{pmatrix} \,, \qquad Q * \begin{pmatrix} T \\ K_Y \end{pmatrix} = \begin{pmatrix} \overline{T} \\ \overline{K} \end{pmatrix} \,, \qquad Q * \begin{pmatrix} T \\ K_Y \end{pmatrix} = \begin{pmatrix} T \\ \overline{K} \end{pmatrix} \,, \qquad Q * \begin{pmatrix} T \\ \overline{K} \end{pmatrix} = \begin{pmatrix} T \\ \overline{K} \end{pmatrix} \,, \qquad Q * \begin{pmatrix} T \\ \overline{K} \end{pmatrix} = \begin{pmatrix} T \\ \overline{K} \end{pmatrix} \,, \qquad Q * \begin{pmatrix} T \\ \overline{K} \end{pmatrix} = \begin{pmatrix} T \\ \overline{K} \end{pmatrix} \,, \qquad Q * \begin{pmatrix} T \\ \overline{K} \end{pmatrix} = \begin{pmatrix} T \\ \overline{K} \end{pmatrix} \,, \qquad Q * \begin{pmatrix} T \\ \overline{K} \end{pmatrix} = \begin{pmatrix} T \\ \overline{K} \end{pmatrix} \,, \qquad Q * \begin{pmatrix} T \\ \overline{K} \end{pmatrix} = \begin{pmatrix} T \\ \overline{K} \end{pmatrix} \,, \qquad Q * \begin{pmatrix} T \\ \overline{K} \end{pmatrix} = \begin{pmatrix} T \\ \overline{K} \end{pmatrix} \,, \qquad Q * \begin{pmatrix} T \\ \overline{K} \end{pmatrix} = \begin{pmatrix} T \\ \overline{K} \end{pmatrix} \,, \qquad Q * \begin{pmatrix} T \\ \overline{K} \end{pmatrix} = \begin{pmatrix} T \\ \overline{K} \end{pmatrix} \,, \qquad Q * \begin{pmatrix} T \\ \overline{K} \end{pmatrix} = \begin{pmatrix} T \\ \overline{K} \end{pmatrix} \,, \qquad Q * \begin{pmatrix} T \\ \overline{K} \end{pmatrix} = \begin{pmatrix} T \\ \overline{K} \end{pmatrix} \,, \qquad Q * \begin{pmatrix} T \\ \overline{K} \end{pmatrix} = \begin{pmatrix} T \\ \overline{K} \end{pmatrix} \,, \qquad Q * \begin{pmatrix} T \\ \overline{K} \end{pmatrix} = \begin{pmatrix} T \\ \overline{K} \end{pmatrix} \,, \qquad Q * \begin{pmatrix} T \\ \overline{K} \end{pmatrix} = \begin{pmatrix} T \\ \overline{K} \end{pmatrix} \,, \qquad Q * \begin{pmatrix} T \\ \overline{K} \end{pmatrix} = \begin{pmatrix} T \\ \overline{K} \end{pmatrix} \,, \qquad Q * \begin{pmatrix} T \\ \overline{K} \end{pmatrix} = \begin{pmatrix} T \\ \overline{K} \end{pmatrix} \,, \qquad Q * \begin{pmatrix} T \\ \overline{K} \end{pmatrix} = \begin{pmatrix} T \\ \overline{K} \end{pmatrix} \,, \qquad Q * \begin{pmatrix} T \\ \overline{K} \end{pmatrix} = \begin{pmatrix} T \\ \overline{K} \end{pmatrix} \,, \qquad Q * \begin{pmatrix} T \\ \overline{K} \end{pmatrix} = \begin{pmatrix} T \\ \overline{K} \end{pmatrix} \,, \qquad Q * \begin{pmatrix} T \\ \overline{K} \end{pmatrix} = \begin{pmatrix} T \\ \overline{K} \end{pmatrix} \,, \qquad Q * \begin{pmatrix} T \\ \overline{K} \end{pmatrix} = \begin{pmatrix} T \\ \overline{K} \end{pmatrix} \,, \qquad Q * \begin{pmatrix} T \\ \overline{K} \end{pmatrix} = \begin{pmatrix} T \\ \overline{K} \end{pmatrix} \,, \qquad Q * \begin{pmatrix} T \\ \overline{K} \end{pmatrix} = \begin{pmatrix} T \\ \overline{K} \end{pmatrix} \,, \qquad Q * \begin{pmatrix} T \\ \overline{K} \end{pmatrix} = \begin{pmatrix} T \\ \overline{K} \end{pmatrix} \,, \qquad Q * \begin{pmatrix} T \\ \overline{K} \end{pmatrix} = \begin{pmatrix} T \\ \overline{K} \end{pmatrix} \,, \qquad Q * \begin{pmatrix} T \\ \overline{K} \end{pmatrix} = \begin{pmatrix} T \\ \overline{K} \end{pmatrix} \,, \qquad Q * \begin{pmatrix} T \\ \overline{K} \end{pmatrix} = \begin{pmatrix} T \\ \overline{K} \end{pmatrix} \,, \qquad Q * \begin{pmatrix} T \\ \overline{K} \end{pmatrix} = \begin{pmatrix} T \\ \overline{K} \end{pmatrix} \,, \qquad Q * \begin{pmatrix} T \\ \overline{K} \end{pmatrix} = \begin{pmatrix} T \\ \overline{K} \end{pmatrix} \,, \qquad Q * \begin{pmatrix} T \\ \overline{K} \end{pmatrix} = \begin{pmatrix} T \\ \overline{K} \end{pmatrix} \,, \qquad Q * \begin{pmatrix} T \\ \overline{K} \end{pmatrix} = \begin{pmatrix} T \\ \overline{K} \end{pmatrix} \,, \qquad Q * \begin{pmatrix} T \\ \overline{K} \end{pmatrix} = \begin{pmatrix} T \\ \overline{K} \end{pmatrix} \,, \qquad Q * \begin{pmatrix} T \\ \overline{K} \end{pmatrix} = \begin{pmatrix} T \\ \overline{K} \end{pmatrix} \,, \qquad Q * \begin{pmatrix} T \\ \overline{K} \end{pmatrix} = \begin{pmatrix} T \\ \overline{K} \end{pmatrix} \,, \qquad Q * \begin{pmatrix} T \\ \overline{K} \end{pmatrix} = \begin{pmatrix} T \\ \overline{K} \end{pmatrix} \,, \qquad Q * \begin{pmatrix} T \\ \overline{K} \end{pmatrix} = \begin{pmatrix} T \\ \overline{K} \end{pmatrix} \,, \qquad Q * \begin{pmatrix} T \\ \overline{K} \end{pmatrix} \,, \qquad Q * \begin{pmatrix} T \\ \overline{K} \end{pmatrix} = \begin{pmatrix} T \\ \overline{K} \end{pmatrix} \,, \qquad Q * \begin{pmatrix} T \\ \overline{K} \end{pmatrix} = \begin{pmatrix} T \\ \overline{K} \end{pmatrix} \,, \qquad Q * \begin{pmatrix} T \\ \overline{K} \end{pmatrix} \,, \qquad Q * \begin{pmatrix} T \\ \overline{K} \end{pmatrix} \,, \qquad Q * \begin{pmatrix} T \\ \overline{K} \end{pmatrix} \,, \qquad Q * \begin{pmatrix} T \\ \overline{K} \end{pmatrix} \,, \qquad Q * \begin{pmatrix} T \\ \overline{K} \end{pmatrix} \,, \qquad Q * \begin{pmatrix} T \\ \overline{K} \end{pmatrix} \,, \qquad Q * \begin{pmatrix} T \\ \overline{K} \end{pmatrix} \,, \qquad Q * \begin{pmatrix} T \\ \overline{K} \end{pmatrix} \,, \qquad Q * \begin{pmatrix} T \\ \overline{K} \end{pmatrix} \,, \qquad Q * \begin{pmatrix} T \\ \overline{K} \end{pmatrix} \,, \qquad Q * \begin{pmatrix} T \\ \overline{K} \end{pmatrix} \,, \qquad Q * \begin{pmatrix} T \\ \overline{K} \end{pmatrix} \,, \qquad Q * \begin{pmatrix} T \\ \overline{K}$$

Примечательный момент в симметрии квантовой релятивистской динамики, есть условие $(a_{22}=1)$ Евклидовой аксиоматики, при котором: $\cos(\varphi_X=0)=(a_{22})=1$, в знаменателе $Q=\frac{1}{\sqrt{1-(a_{22})^2}}\begin{pmatrix} a_{22} & 1/c \\ c & a_{11} \end{pmatrix}$ получаем ноль. Поэтому сохраняя **математическую истину**, мы рассматриваем пространство самого кванта в условиях (c=1), и получаем соотношения:

$$Q = \frac{1}{\sqrt{1 - (a_{22})^2}} \binom{a_{22}}{1} \frac{1}{a_{11}} = \frac{0}{0} = 0 \;, \qquad \text{или} \qquad \binom{a_{22}}{1} \frac{1}{a_{11}} = 0 \;.$$

$$a_{22} * a_{11} - 1 = 0 \;, \qquad a_{22} * a_{11} = 1$$

Это очень интересное условие: $[\cos(\varphi_Y=0)=1)*(\cos(\varphi_X=0)=1)=1]-[1*1]=0$, и оно действительно в Евклидовой аксиоматике. Определитель такой матрицы равен нулю, если два столбца или две строчки равны. Формально, в Евклидовом пространстве, в данном представлении: $(\cos(\varphi_Y=0)=1)*(\cos(\varphi_X=0)=1)$, эти условия: $a_{22}*a_{11}=1$, соблюдаются. Но эти же условия соблюдаются и в нестационарном Евклидовой пространстве, с той же математической истиной: $a_{22}*a_{11}=1$, но уже в виде: $\cos(\varphi_Y\neq0)*\cos(\varphi_X\neq0)=1$. Здесь, в Евклидовом пространстве мы не видим динамику внутри кванта пространства-материи, но это не означает, что внутри кванта такой динамики нет. Это квантовая релятивистская динамика, которой нет в Евклидовой аксиоматике $(\varphi=0)$ пространства-времени. И это условия квантовой релятивистской динамики.

Второй момент в симметрии единого (X+=Y-), (X-=Y+) пространства-материи в моделях

протона:
$$(X\pm=p^+)=(Y-=\gamma_0^+)(X+=\nu_e^-)(Y-=\gamma_0^+)$$
 , или $(X\pm=p^+)=(Y\pm)^2(X\pm)$: и электрона: $(Y\pm=e^-)=(X-=\nu_e^-)(Y+=\gamma^+)(X-=\nu_e^-)$, или $(Y\pm=e^-)=(X\pm)^2(Y\pm)$

в динамичном пространстве-материи («Единая теория 2»). Условия такой симметрии представляются в виде: $a_{22}^2*a_{11}=\cos^2(\varphi_X)\cos(\varphi_Y)=1$, квантовой релятивистской динамики $(a_{11}\neq a_{22})\neq const$ для $(X\pm)$ кванта.

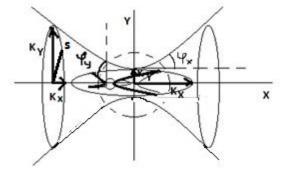


Рисунок 4

Таким образом, мы имеем генератор группы $\binom{(a_{22})^2}{c} \frac{1/c}{a_{11}} = 0$, или: $a_{22}^2 * a_{11} = \cos^2(\varphi_X) \cos(\varphi_Y) = 1$. При этом, $\cos^2(\varphi_X) = \sqrt{1-\sin^2(\varphi_X)}$, $\sin(\varphi_X) = \frac{w_Y}{c}$, $w_Y = \frac{\kappa_Y}{T_Y}$, и $\cos^2(\varphi_X) = \sqrt{1-(\frac{w_Y}{c})^2}$, получаем такую же релятивистскую поправку, как и в группе Лоренца, но уже для квантовой релятивистской динамики $\cos(\varphi_Y)$.

$$(X\pm)=(X+=Y-)^2*(Y+=X-)$$
 , или: $\Pi K*\cos^2(\varphi_X)\cos(\varphi_Y)=1*\Pi K$. $(\Pi K(X+=Y-)=m_0=1)*\cos^2(\varphi_X)_{max}\cos(\varphi_Y)_{max}=1*(\Pi K(Y+=X-)=q_0=1)$,

в единых Критериях Эволюции зарядовых (Y + = X -), и массовых (X + = Y -) полей протона и электрона.

Это ключевой момент, когда симметрия: $\cos^2(\varphi_X)\cos(\varphi_Y)=1$ масштабируется,

$$\Pi K * \cos^2(\varphi_X) \cos(\varphi_Y) = 1 * \Pi K,$$

зарядовыми и массовыми полями единого $(X\pm)=(Y\mp)$ пространства-материи, с данном случае. При этом, предельные углы параллельности квантовых полей, соответствуют константам взаимодействия в локальных базисных векторах в уже римановом пространстве:

$$a_{11} = 1 * 1 * cos(\varphi_Y)_{max} = cos(\varphi_Y)_{max} = \alpha = \frac{1}{137036}$$

$$a_{22}=1*1*cos(\varphi_X)_{max}=cos(\varphi_X)_{max}=\sqrt{G=6.67*10^{-8}}$$
 , или $a_{22}{}^2=\cos^2(\varphi_X)=G$.

Преобразования уже квантовой релятивистской динамики $(\phi_X \neq const)$, и $(\phi_Y \neq const)$, масштабируем матрицей, с предельными параметрами кванта пространства-материи (рисунок 4) в такой динамике в виде:

$$\begin{pmatrix} \cos(\varphi_X = 0) = 1 & \cos(\varphi_Y)_{max} = \alpha \\ \cosh\left(\frac{X=0}{Y_0}\right) = 1 & \cosh\left(\frac{Y=0}{X_0}\right) = 1 \end{pmatrix}^2 = \begin{pmatrix} 1 & \alpha \\ 1 & 1 \end{pmatrix}^2 = (1-\alpha)^2, \quad \mathsf{и}$$

Получаем: $(1-\alpha)^2*G*\alpha(\Pi K=m_0=1)=1*(\Pi K=q=1)$, или в конечном итоге электрический заряд, $q(Y+=X-)=(1-\alpha)^2*G*\alpha=(1-1/137.036)^2*6.67*10^8*(1/137.036)=4.8*10^{-10}$,

в его квантовой релятивистской динамике. Заряд в таком представлении, соответствует соотношениям:

$$\alpha = \frac{q^2}{\hbar c} = \frac{1}{137.036}$$
.

 $\alpha = \frac{q^2}{\hbar c} = \frac{1}{137.036} \, .$ В строгих математических истинах. Примечательно в квантовой релятивистской динамике то, что изотропия пространства-времени Евклидовой сферы, точно такая как и изотропия вдоль каждой оси динамичного эллипсоида: $(K_Y\downarrow)^2+(K_X=cT_X\uparrow)^2=(s)^2$ нестационарного Евклидового пространства-времени. Динамика периода (T_X) соответствует замедлению или ускорению хода времени вдоль оси (X). В данном случае квантовой релятивистской динамики, мы говорим о динамике самого пространства-времени кванта пространства-материи, в условиях генератора группы (Q=0), когда события не выходят из динамичного эллипсоида. Пространство эллипсоида, это скрытое пространство (рис.3), в которое с Евклидового пространства-времени, мы попасть не сможем. Правильно сказать, в Евклидовом пространстве его нет.

$$(+K_Y)(-K_Y) + (K_X = cT_X \uparrow)^2 = (s = 0)^2$$
, или: $(cT_X)^2 = (K_Y)^2$, или: $cT_X = K_Y$

И это значит, что поверхность динамичного эллипсоида, свет достигает одновременно вдоль каждой оси. Или, любая точка фотона, имеет скорость света. Мы говорим, при этом, о Евклидовой изотропии нестационарного Евклидового пространства в квантовой релятивистской динамике. Такого пространства нет в осях (ХҮZ) стационарного Евклидового пространства. Но правильней будет наоборот. В реальном пространстве-материи, с Евклидовой изотропией в ненулевых углах параллельности с нестационарным Евклидовым пространством, нет стационарного Евклидового пространства с нулевым углом параллельности в (XYZ) осях. В этом причина не локальности одновременных событий, как уже факты экспериментов.

3.Супер симметрии в квантовой релятивистской динамике.

В квантовой системе координат динамичного пространства-материи, мы говорили о первой $(OЛ_1)$ уровня, Области Локализации неделимых квантов пространства-материи $(p)(e)(\nu_u)(\gamma_0)(\nu_e)(\gamma)$, («Единая Теория 2»).

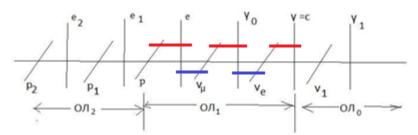


Рисунок 5.

В этой Области Локализации неделимых квантов $(O\Pi_1)$ уровня, имеют место $(Y+=e^-)=(X-=p^+)$ зарядовые $(Y+=\gamma_0^-)=\left(X-=\nu_\mu^+\right)$, $(Y+=\gamma^+)=(X-=\nu_e^-)$, и массовые: $(Y-=e^-)=\left(X+=\nu_\mu^+\right)$ изопотенциалы $(Y-=\gamma_0^-)=(X+=\nu_e^+)$, вещества в данном случае, в их структурировании. Имеет место спектр масс этих неделимых квантов пространства-материи. m(p) = 938,28 MeV, $G = 6,67 * 10^{-8}$. $m_e=0.511~MeV$, $(m_{\nu_\mu}=0.27~MeV),$

$$\left(\frac{X=K_X}{K}\right)^2(X-) = \cos^2\varphi_X = \left(\sqrt{G}\right)^2 = G \;, \qquad \left(\frac{Y=K_Y}{K}\right)(Y-) = \cos\varphi_Y = \alpha = \frac{1}{137,036}$$

$$m = \frac{F=\Pi^2}{Y''} = \left[\frac{\Pi^2T^2}{Y} = \frac{\Pi}{(Y/K^2)}\right] = \frac{\Pi Y = m_Y}{\left(\frac{Y^2}{K^2} = \frac{G}{2}\right)} \;, \; \text{ откуда: } 2m_Y = Gm_X \;, \text{ или:}$$

 $2(\Pi \mathbb{K} = m_Y) = \Pi \mathbb{K} * (\cos^2(\varphi_X) = G) * (\cos(\varphi_Y) = 1) * (\Pi \mathbb{K} = m_X)$, в квантовой релятивистской динамике $m = \frac{F = \Pi^2}{X''} = \left[\frac{\Pi^2 T^2}{X} = \frac{\Pi}{(X/K^2)}\right] = \frac{\Pi X = m_X}{\left(\frac{X^2}{K^2} = \frac{\alpha^2}{2}\right)}$, откуда $2m_X = \alpha^2 \ m_Y$, или:

 $2(\Pi K = m_X) = \Pi K * (\cos^2(\varphi_Y) = \alpha^2) * (\cos(\varphi_X) = 1) * (\Pi K = m_Y)$, в квантовой релятивистской динамике Из такой квантовой релятивистской динамики, следуют расчеты спектра в квантовой системе координат.

$$m_X=\propto^2 m_Y/2$$
 , или: $\left(\propto/\sqrt{2}\right)*\Pi \mathrm{K}*\left(\propto/\sqrt{2}\right)=\frac{\propto^2 m(e)}{2}=m\left(\nu_e^\pm\right)=1.36*10^{-5} MeV$, $m_Y=Gm_X/2$, или: $\left(\sqrt{G/2}\right)*\Pi \mathrm{K}*\left(\sqrt{G/2}\right)=\frac{Gm(p)}{2}=m\left(\gamma_0^\pm\right)=3.13*10^{-5} MeV$

аналогично:
$$m(\gamma) = \frac{Gm(\nu_{\mu})}{2} = 9,1*10^{-9} MeV.$$

В едином $(Y \pm = X \mp)$ или (Y + = X -), (Y - = X +) пространстве-материи неделимых структурных форм неделимых квантов $(Y\pm)$ и $(X\pm)$. Реальность таких представлений, следует из расчетов.

$$(Y\pm=e^-)=(X+=\nu_e^-)(Y-=\gamma^+)(X+=\nu_e^-)$$
 электрона, где НОЛ $(Y\pm)$ =КЭ $(Y+)$ КЭ $(Y-)$, и $(X\pm=p^+)=(Y-=\gamma_0^+)(X+=\nu_e^-)(Y-=\gamma_0^+)$ протона, где НОЛ $(X\pm)$ =КЭ $(X+)$ КЭ $(X-)$,

мы отделяем электро(Y+=X-)магнитные поля от массовых полей (Y-=X+) в ви

мы отделжем электро
$$(Y - X)$$
 магнитные поли от массовых полей $(Y - X)$ в виде: $(X +)(X +) = (Y -)$ и $\frac{(X +)(X +)}{(Y -)} = 1 = (Y +)(Y -)$; $(Y + = X -) = \frac{(X +)(X +)}{(Y -)}$, или: $\frac{(X + = v_e^-/2)(\sqrt{2}*G)(X + = v_e^-/2)}{(Y - = y^+)} = q_e(Y +)$ $q_e = \frac{(m(v_e)/2)(\sqrt{2}*G)(m(v_e)/2)}{m(y)} = \frac{(1.36*10^{-5})^2*\sqrt{2}*6,67*10^{-8}}{4*9,07*10^{-9}} = 4,8*10^{-10}$ СГСЕ $(Y +)(Y +) = (X -)$ и $\frac{(Y +)(Y +)}{(X -)} = 1 = (X +)(X -)$; $(Y + = X -) = \frac{(Y -)(Y -)}{(X +)}$, или: $\frac{(Y - = v_0^+)(\alpha^2)(Y - = v_0^+)}{(X + = v_e^-)} = q_p(Y + = X -)$, $q_p = \frac{(m(y_0^+)/2)(\alpha^2/2)(m(y_0^+)/2)}{m(v_e^-)} = \frac{(3,13*10^{-5}/2)^2}{2*137,036^2*1.36*10^{-5}} = 4,8*10^{-10}$ СГСЕ

Такие совпадения не могут быть случайными. Здесь мы фиксируем тот факт, что квантовая релятивистская динамика действительна и ее расчеты дают результаты. Контрольная проверка реальности таких фактов, следует уже из экспериментальных фактов. Для длины волны протона $\lambda_p=2,1*10^{-14}$ см, его частота $(\nu_{\gamma_0^+})=\frac{c}{\lambda_p}=1,4286*10^{24}$ Г μ формируется частотой (γ_0^+) квантов, с массой $2(m_{\gamma_0^+})c^2=G\hbar(\nu_{\gamma_0^+}).$ $1\varepsilon=5,62*10^{26}$ МеV , или $(m_{\gamma_0^+})=\frac{G\hbar(\nu_{\gamma_0^+}).}{2c^2}=\frac{6,67*10^{-8}*1,0545*10^{-27}*1,4286*10^{24}}{2*9*10^{20}}=5,58*10^{-32}\varepsilon=3,13*10^{-5}$ МеV Аналогично для электрона $\lambda_e=3,86*10^{-11}$ см, его частота $(\nu_{\nu_e^-})=\frac{c}{\lambda_e}=7,77*10^{20}$ Г μ , формируется частотой

$$1$$
г $=5,62*10^{26} MeV$, или $(m_{\gamma_0^+})=rac{Gh(
u_{\gamma_0^+})}{2c^2}=rac{6,67*10^{-8}*1,0545*10^{-27}*1,4286*10^{24}}{2^{*9}*10^{20}}=5,58*10^{-32}$ г $=3,13*10^{-5} MeV$ Аналогично для электрона $\lambda_e=3,86*10^{-11} c$ м, его частота $(
u_{\nu_e^-})=rac{c}{\lambda_o}=7,77*10^{20} \Gamma$ ц , формируется частото

 (v_e^-) квантов, с массой $2(m_{v_e^-})c^2=lpha^2\hbar(v_{(v_e^-)})$, где $lpha(Y-)=rac{1}{137,036}$ константа, получаем для массы нейтрино:

$$(m_{\nu_e^-})=rac{lpha^2\hbar(
u_{(
u_e^-)})}{2c^2}=rac{1*1,0545*10^{-27}*7,77*10^{20}}{(137,036^2)*2*9*10^{20}}=2,424*10^{-32}$$
г $=1,36*10^{-5}$ Ме V , или:

Стабильные частицы с продуктами аннигиляции в едином (
$$Y \mp= X \pm$$
) пространстве-материи: $(X \pm= p) = (Y -= \gamma_o)(X += \nu_e)(Y -= \gamma_o) = \left(\frac{2\gamma_o}{G} - \frac{\nu_e}{\alpha^2}\right) = 938,275~\textit{MeV}~;$ протона и: $(Y \pm= e) = (X -= \nu_e)(Y += \gamma)(X -= \nu_e) = \left(\frac{2\nu_e}{\alpha^2} + \frac{\gamma*\alpha}{2G}\right) = 0,511~\textit{MeV}~;$ электрона.

Такие совпадения тоже не случайны и они следуют уже из экспериментальных данных. Если в симметриях квантовой релятивистской динамики мы пользовались симметрией:

$$\Pi \mathbb{K} * \cos^2(\varphi_X) \cos(\varphi_Y) = 1 * \Pi \mathbb{K},$$

из которой следует квантовая релятивистская динамика электрических зарядов протона и электрона, то сейчас рассмотрим такую же $(\cos^2(\varphi_X)\cos(\varphi_Y)=1)$ симметрию квантовой релятивистской динамики: $(\Pi K)^2 * \cos^2(\varphi_X) \cos(\varphi_Y) = 1 * (\Pi K)^2,$

но уже для квадратичной формы. Эта симметрия следует из расчетов константы взаимодействия двух зарядов, которые представим в единых Критериях Эволюции в виде:

$$\hbar c * \propto = q^2$$
, или: $((\Pi K)^2 = \hbar c) * (\cos^2(\varphi_X = 0) = 1) * (\cos(\varphi_Y)_{max} = \infty) = 1 * (\Pi K = q)^2$.

В данном случае, мы выделяем релятивистский инвариант ($\hbar c = {
m const}$), но уже в квантовой релятивистской

динамике
$$\cos^2(\varphi_X)\cos(\varphi_Y)=1$$
 или: $\begin{pmatrix}\cos^2(\varphi_X)&0\\0&\cos(\varphi_Y)\end{pmatrix}=\begin{pmatrix}1&0\\0&1\end{pmatrix}$ этого инварианта, в виде:
$$((\Pi \mathsf{K})^2=\hbar c)*(\cos^2(\varphi_X)=1)(\cos(\varphi_Y)=\infty)=1*(\Pi \mathsf{K}=q)^2\ .$$

$$\frac{(\Pi \mathsf{K}=q)^2}{(\cos^2(\varphi_X)=1)*(\cos(\varphi_Y)_{max}=\infty)}=\hbar c\ , \quad \text{или:} \quad \frac{(4,8*10^{-10})^2)}{(1/137.036)}=3.157*10^{-17}\cong(\hbar c=3.1647*10^{-17}).$$

Аналогично, в этой же математической модели квантовой релятивистской динамики, имеет место:

$$((\Pi \mathbb{K} = m_0)^2) * \frac{(\cos^2(\varphi_X) = G)(\cos(\varphi_Y = 0) = 1)}{(\sigma_0)^2 * G * 1 = 1 * (\hbar c)}, \text{ или:}$$

$$(m_0)^2 * G * 1 = 1 * (\hbar c), \text{ откуда:} \quad \sqrt{G} * m_0 \sqrt{G} * m_0 = \hbar c, \text{ релятивистский инвариант для масс:}$$

$$(m_0)^2 = \frac{\hbar c}{G} = \frac{3.1647 * 10^{-17}}{6.67 * 10^{-8}} \cong 1 * 4.8 * 10^{-10}, \text{ дает заряд, или:} \quad \frac{(m_0)^2 = \frac{\hbar c}{G}}{G}$$

Его матричное представление с константой взаимодействия в виде:

$$\begin{pmatrix} \sqrt{G} * m_0 & 0 \\ 0 & \sqrt{G} * m_0 \end{pmatrix} = \hbar c ,$$

 $\begin{pmatrix} \sqrt{G}*m_0 & 0 \\ 0 & \sqrt{G}*m_0 \end{pmatrix} = \hbar c \;,$ Этот инвариант, мы масштабируем реальными квантами, $\sqrt{G}*(m_0=\gamma_0^\pm)\sqrt{G}*(m_0=\nu_e^\pm) \;$, массового изопотенциала, и воздействуем генератором группы: $Q=\begin{pmatrix} (a_{22})^2 & 1 \\ 1 & a_{11} \end{pmatrix}=0$, из которого следует квантовая релятивистская динамика: $(a_{22})^2 a_{11} = 1$, с учетом классических соотношений $\pi = \frac{l}{d} = \frac{2(X-1)}{2Y_0}$:

$$\begin{pmatrix} \cosh\left(\frac{x=0}{\gamma_0}\right)=1 & -\pi* \cosh(1) \\ \pi*(\cos(\phi_Y)_{max}=\propto) & \cos(\phi=0)=1 \end{pmatrix} = (1+\alpha* \cosh(1)*\pi^2)\;.$$
 В конечном итоге следуют соотношения квантовой релятивистской динамики: $(a_{22})^2a_{11}=1$,:

$$\begin{pmatrix} \sqrt{G} * \gamma_0^\pm & 0 \\ 0 & \sqrt{G} * \nu_e^\pm \end{pmatrix} * (1 + \alpha * \operatorname{ch}(1) * \pi^2) = \hbar c = \left(\gamma_0^\pm\right) G\left(\nu_e^\pm\right) * (1 + \alpha * \operatorname{ch}(1) * \pi^2) \text{ , или:}$$

$$(\hbar c = 3.1647 * 10^{-17}) = (3.13 * 10^{-5}) * 6.67 * 10^{-8} * (1.36 * 10^{-5}) * \left(1 + \frac{1.543 * (3.14)^2}{137.036}\right) = 3.155 * 10^{-17} \text{ .}$$

В физической терминологии, мы говорим, что указанные бозоны и фермионы, формируют релятивистский инвариант ($\hbar c$), в указанном матричном представлении. Здесь мы говорили о массовом изопотенциале: $(Y-=\gamma_0^-)=(X+=\nu_e^+)$, в квантовой системе координат. Точно так, масштабируя квантовую релятивистскую динамику уже другого: $(Y-=\mathrm{e}^-)=\left(\mathrm{X}+=\nu_\mu^+\right)$ массового изопотенциала, получим такой же результат.

$$\frac{1}{2}*\begin{pmatrix}G*e/\pi&0\\0&G*\nu_{\mu}/\pi\end{pmatrix}(1+\alpha*\pi)=\hbar\mathrm{c}\;,\;\mathrm{или}:\;(e)(G/\pi)^2\big(\nu_{\mu}\big)*(1+\alpha*\pi)=\hbar\mathrm{c}\;,\\(0.5)*(0.511)*(6.67*10^{-8}/3.14)^2*(0.27)*(1+3.14/137.036)=\frac{3.18*10^{-17}}{3.14*10^{-17}}=(\hbar\mathrm{c}=\frac{3.1647*10^{-17}}{3.14*10^{-17}})\;.$$

Таким образом, мы получили такой же релятивистский инвариант $(\hbar c)$, в указанном матричном представлении симметрии бозонов и фермионов в квантовой релятивистской динамике. Иными словами, мы говорим о супер симметрии $(\Pi K)^2 * \cos^2(\varphi_X) \cos(\varphi_Y) = 1 * (\Pi K)^2$ указанных бозонов и фермионов, в квантовой релятивистской динамике изопотенциалов квантовой системы координат.